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Long-term Warming,
Short-term Variability

Temperature Difference Precipitation Change
(Relative to 1950-1999 average) (Relative to 1950-1999 average)
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All but six of the years from 1980-2014 were warmer than the 20" century average.




Disclaimer | Maps and Graphs
Variable type and network
Temperature, Seasonal, (USHCN) v

Metric
Average Maximum Temperature, Calendar Year
() Average Maximum Temperature, July-Septem...
Average Maximum Temperature, October-Ma...
Average Minimum Temperature, Calendar Year
Average Minimum Temperature, July-Septem...
Average Minimum Temperature, October-March
Average Temperature, Calendar Year
Average Temperature, December-February
Average Temperature, March-May
Average Temperature, July-September
Average Temperature, October-March

After selecting a metric,
click on a station to get
an updated graph.

For linear trends, choose
1895 or later:
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Degrees Farenheit (°F)

USHCN Stations Reporting Average Maximum Temperature, July-

© OpenStreetMap contributors
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Seattls

Average Maximum Temperature, July-September, Seattle (USHCN)
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Time series, linear trend, and 30 year averages
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Linear trend: 0.1380°F per decade
P-values: 0.0030 (T-test); 0.002 (Mann-Kendall)
Statistically significant
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https://cig.uw.edu/resources/analysis-tools/seattle-city-light-trends/



https://cig.uw.edu/resources/analysis-tools/seattle-city-light-trends/

Same story, but much more warming

Temperature Difference

(Relative to 1950-1999 average)
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Quantifying Climate Impacts

Global Regional
Climate Climate
Scenarios Scenarios

Monitoring,
Assessment,
Planning

Impacts
Modeling

(i.e.: “downscaling”)
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Quantifying Climate Impacts
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Greenhouse gas “scenarios”
are best guesses about future emissions
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Global Climate Models (GCMs)

GCMs break the world into
boxes (“grid cells”, each ~50
to 200 km on a side)

State of the art, highly
complex models
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Most are “coupled”: they
simulate interactions among
the land surface, ocean, sea
Ice, and atmosphere.




Ex: Annual Temperature & Precipitation

Temperature Difference Precipitation Change
(Relative to 1950-1999 average) (Relative to 1950-1999 average)
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More Intense
Heavy Rains

Heaviest rain events are projected
to become +22% more intense
(range: +5 to +34%) by the 2080s.

Changes in Winter Atmospheric
Rivers along the North American
West Coast in CMIP5 Climate Models

Warner, Mass, Salathé, J Hydromet, 2014



Downscaling
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Model Scale:

Climate Models circa early 1990s  Global coupled climate
models in 2006

' Global models in 5-10 yrs
Regional models

25 km 10 km

Source: Strand, UCAR



Downscaling relates the large to the small

Global Climate Model Air Temperature

~100-200 km
(~60-120 mi)
resolution
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Impacts Modeling
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ex: Hydrologic Modeling

Translation from climate to water impacts

Variable Infiltration Capacity (VIC)
Macroscale Hydrologic Model

Grid Cell Vegefation Coverage

Cell Energy and Moisture Fluxes
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Snow

Our primary mechanism
for storing water — snow
—is sensitive to
warming.

The Cascade and Olympic
Mountains have the highest
fraction of “warm snow”

(snow falling between 27-32°F)

in the continental U.S.

(Mote et al. 2008) CLIMATE
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Natural flow (cfs)

Implications of losing snowpack
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(these projections do not include changes in heavy rain events)




Doing Something
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At its core, planning for climate change is about
risk management




Choosing & Using Scenarios

Information / Context Expertise
1. Conceptual model: Manager
« Understanding of system Biologist
» Sensitivity to climate Engineer

Toxicologist...

2. Climate science: Climate scientist
» Climate effects on system
» Able to simulate?
» Spatial resolution
» Temporal scales (variability

v. trends)
3. Decision context: Policymaker
« Robust v. most likely Risk Tolerance

* Best vs. worst case
* Time horizon

Source: Snover et al., Cons. Bio., 2013
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* There will always be a range of projections:
some uncertainties are irreducible. Best to
consider a variety of approaches.

 Downscaling relates the large to the small:
different approaches needed for different
applications.

* Translating from climate change to impacts:
additional modeling is often needed to do this.

* Context determines what matters: Sensitivity to
climate change, time frame, risk tolerance.




~ Guillaume Mauger Sl il

TS
gmaL.uger@uw.edu N7
- @guillaumemauger IMEACTS
| (206) 685-0317 UW Climate Impacts Group i
cig.uw.edu

Climate Science in the
Public Interest

COLLEGE OF THE ENVIRONMENT
UNIVERSITY of WASHINGTON



mailto:gmauger@uw.edu
https://twitter.com/guillaumemauger

ex: Crop Modeling

Translation from climate to ag production

Precipitation

Intercepted
Transpiration Water Irrigation
Evaporation Irrigation
Droplet
Evaporation
x B 4 | nfiltration

Bare Soil
Evaporation

Runoff

Percolation

L | 1

i Baseflow




Ex: Hydrologic Projections

Historical

Percentage of Winter Precipitation Captured in Peak Snowpack
<10% (% Rain dominant  10% - 40% M Mixed rain and snow > 40% (% Snow dominant




Remember that all models

are wrong;
the practical question is
how wrong do they have to

be to not be useful.

Source: Box and Draper, Empirical Model-Building, p. 74



Good questions to ask:

 What are the inputs, outputs, internal equations,
limitations, assumptions?

* Are there competing models? How do they differ?
 What parts of the model are certain?
* How good are the inputs?

 What is the range of possible outputs given known
uncertainties in the model?

Slide adapted from Ashley Steel, US Forest Service Seattle



Ex: Annual Temperature & Precipitation

Temperature Difference Precipitation Change
(Relative to 1950-1999 average) (Relative to 1950-1999 average)
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